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Motivated by recent progress in signal processing on graphs, we have developed a matched signal detection
(MSD) theory for signalswith intrinsic structures described byweighted graphs. First, we regard graph Laplacian
eigenvalues as frequencies of graph-signals and assume that the signal is in a subspace spanned by the first few
graph Laplacian eigenvectors associated with lower eigenvalues. The conventional matched subspace detector
can be applied to this case. Furthermore, we study signals that may not merely live in a subspace. Concretely,
we consider signals with bounded variation on graphs and more general signals that are randomly drawn
from a prior distribution. For bounded variation signals, the test is a weighted energy detector. For the random
signals, the test statistic is the difference of signal variations on associated graphs, if a degenerate Gaussian dis-
tribution specified by the graph Laplacian is adopted. We evaluate the effectiveness of the MSD on graphs both
with simulated and real data sets. Specifically, we apply MSD to the brain imaging data classification problem
of Alzheimer's disease (AD) based on two independent data sets: 1) positron emission tomography data with
Pittsburgh compound-B tracer of 30 AD and 40 normal control (NC) subjects, and 2) resting-state functional
magnetic resonance imaging (R-fMRI) data of 30 earlymild cognitive impairment and 20NC subjects. Our results
demonstrate that theMSD approach is able to outperform the traditionalmethods and help detect AD at an early
stage, probably due to the success of exploiting the manifold structure of the data.

© 2015 Published by Elsevier Inc.
Introduction

Matched subspace detection is a classic tool that determines
whether a multidimensional signal lies in a given linear subspace or
not (Scharf and Friedlander, 1994). It has achieved great success in ap-
plications such as radar, hyperspectral imaging (Manolakis and Shaw,
2002) and medical imaging (Li et al., 2009). The subspace is either
known from the physical system that generates the signal, or can be in-
ferred from training data. Subspace learning is a natural way of data di-
mension reduction and can be achieved by principal component
analysis (PCA), which projects the original data to a linear subspace
spanned by the leading eigenvectors of the covariance matrix (Jolliffe,
2005). While a common assumption of PCA is that the data come from
a linear subspace, many real data are lying in or close to a nonlinear
manifold, which is a topological space that resembles Euclidean space
around each point (Belkin and Niyogi, 2003). Examples of the latter
case include brain images (Liu et al., 2013), genetic data (Lee et al.,
2008), social network records, and sensor network measurements. In
this setting, the low-dimensional subspace that best preserves the
i).
intrinsic geometry of the data can be effectively learned by graph spec-
tral methods, e.g., isomap, locality linear embedding (LLE), Laplacian
eigenmaps (Belkin and Niyogi, 2003; Roweis and Saul, 2000; Saul
et al., 2006; Tenenbaum et al., 2000).

In neuroimaging, as more and more nonlinear data are collected by
multiple imaging modalities, there is a need for classifying data with
complex intrinsic structures. For instance, the analysis and classification
of positron emission tomography (PET) images or functional magnetic
resonance imaging (fMRI) data may facilitate the prediction and early
detection of Alzheimer's disease (AD). Concurrently, an emerging area
of signal processing on graphs is developed for handling these challeng-
ing data through the combination of algebraic and spectral graph theo-
retic concepts with computational harmonic analysis (Shuman et al.,
2013). Signals are assumed to reside on vertices of weighted graphs
which are often naturally defined by the application. The weight associ-
ated with a certain edge in the graph represents the similarity between
the two vertices joined by the edge. We refer to graph supported data
as graph-signals, to differentiate them from conventional signals in
Euclidean spaces. In the brain imaging classification, we could view
the PET/fMRI data as graph-signals on weighted graphs describing the
affinity between each pair of brain regions.

Motivated by the above data classification requirement, we are in-
terested in developing a detection framework for graph-signals.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.10.026&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2015.10.026
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Specifically, we formulate several hypotheses to decide which graph
structure is more likely to match a given signal. Moreover, we exploit
the matched subspace detection technique and propose different
types of graph-signal models to make our framework generic to deal
with a variety of real situations. The subspace for graph-signal is formed
by eigenvectors of the Laplacian matrix L of the graph. The graph
Laplacian matrix encodes the structure of the graph concisely. From a
graph signal processing point-of-view, eigenvectors of L could be treat-
ed as the generalization of the basis of conventional Fourier transform
(Agaskar and Lu, 2013; Sandryhaila and Moura, 2013; Shuman et al.,
2013). Based on spectral graph theory, we can define the variation of
graph-signals. It follows that the variation of an eigenvector of L is
equal to the associated eigenvalue (Hu et al., 2015a). When we decom-
pose a signal containing instantaneous fMRI measurements into linear
combination of eigenvectors of Laplacian matrix associated with the
brain-region-affinity graph, we might deem that the components in
those eigenvectors with larger eigenvalues as being noisier if the true
fMRI signal is assumed to be bandlimited on the graph (Gadde et al.,
2013; Kim et al., 2013; Meyer and Shen, 2014).

Our first hypothesis testmodel simply assumes that the signal lies in
a subspace spanned by the first few Laplacian eigenvectors correspond-
ing to smaller eigenvalues. The traditional matched subspace detection
could be applied directly to this case. Furthermore, we consider two cat-
egories of graph-signal models: deterministic signals with constraints
and probabilistic signals with prior distributions. For deterministic sig-
nals, we impose a bounded variation on the signal with respect to the
graph. The penalized maximum likelihood estimator (MLE) of the true
signal is derived by solving a constrained optimization problem. We
find that the test is a weighted energy detector. For probabilistic signals,
whenwe choose a certain degenerate Gaussian distribution as the prior
of the projection coefficients of the signal onto the graph Laplacian ei-
genvectors, the decision ends up comparing the signal variations on
the two hypothetic graphs in a noise-free case.

We evaluate the effectiveness of the matched signal detection
(MSD) theory on both synthetic and real data sets. Simulations based
on randomly generated graphs demonstrate the feasibility of our ap-
proaches even if we do not know the exact probability distributions
of the testing signals. Then, we apply the proposed detection algo-
rithms to brain imaging classification tasks of AD. As one of the most
prevalent forms of dementia, AD is believed to be a brain network asso-
ciated disease (Gomez-Ramirez and Wu, 2014; Raj et al., 2012;
Sepulcre et al., 2013), and is characterized by progressive impairment
of memory and other cognitive capacity. It affects nearly 36 million
people worldwide with an expected number of cases to be 65.7 million
by 2030 (Brookmeyer et al., 2007). The development of neuroimaging
classification techniques may enable us to monitor the functional and
anatomical changes of the brain in vivo and discover reliable bio-
markers for identifying AD at an early stage. In this study, we have
compared a novel MSD approach with other widely used methods in-
cluding principle component analysis (PCA), support vector machine
(SVM) and linear discriminant analysis (LDA) on two data sets: one is
PET imaging of brain amyloid using Pittsburgh compound-B (PIB) trac-
er of AD and normal control (NC) subjects; the other contains resting-
state fMRI (R-fMRI) images of early mild cognitive impairment (EMCI)
and NC subjects in the Alzheimer's Disease Neuroimaging Initiative
(ADNI) database. For the MSD, we compute the similarity between
each of two brain regions with the Gaussian radial basis function
(RBF) kernel. This simple way of building brain networks avoids esti-
mating network structures by solving inverse problems, which often
requires more data; yet the weighted graphs associated with the net-
works approximate the data manifolds. Experimental results show
that when using theMSD on graphs, we can achieve significantly better
classification performance than the compared algorithms. The results
indicate that our method provides an effective way for brain imaging
classification, probably due to the capability of exploiting the manifold
structure of the data.
Our contributions in this paper are three-fold: first, we have devel-
oped a matched signal detection theory for graph-signals which are
ubiquitous inmedical imaging applications; second, we keep the frame-
work generic and simple by proposing a variety of signal models and
using simple similarity metrics to construct graphs; third, we demon-
strate that the detection theory is particularly suitable for neuroimaging
classifications.

Theory

To formulate the framework of matched signal detection on graphs,
we first introduce the concept of graph-signals. We extend the tradi-
tional Fourier transform to a graph Fourier transform and define a no-
tion of graph-signal frequency based upon spectral graph theory.
Then, to model different real data, we propose three classes of signal
models on graphs. Finally, we derive the signal detection criterion
under each signal model.

Weighted graphs and graph-signals

Many contemporary applications such as social, power grid, sensor,
and brain networks involve high-dimensional data with natural struc-
tures defined by weighted graphs. To efficiently process such signals
on graphs, an emerging field of signal processing on graphs integrates
the graph spectral theory with computational harmonic analysis. Here
we present basic concepts of signal processing on graphs in the context
of neuroimaging data analysis.

A brain network can be represented by aweighted graphGðV;E;WÞ
containing a vertex set VðjVj ¼ NÞ, an edge set E and a weighted adja-
cency matrix W. The vertices typically indicate a group of predefined
brain regions or a set of image voxels (Stanley et al., 2013; Zalesky
et al., 2010). If there is an edge between vertices i and j, thenWijdenotes
the weight of the edge; otherwise, Wij = 0. We assume the similarity
metric is symmetric and non-negative, namely Wij = Wji ≥ 0 for all i
and j. Meanwhile, it is reasonable to assume that no brain region is iso-
lated. Therefore,G should be undirected and connected. Physiologically,
Wijmayquantify the similarity of two brain regions in termsof their bio-
chemical measurements (such as the amyloid deposition revealed by
PIB-PET) or anatomical properties (such as the number of fiber path-
ways connecting those regions). The exact formula of the weights
could be chosen flexibly based on different applications.

In addition to the adjacency matrix, we introduce the graph
Laplacian as another important graph associated matrix. We denote by
D the degree matrix which is diagonal with Dii = ∑j = 1

N Wij. Then, the

graph Laplacian is defined as L¼de f D−W . Because L is a real symmetric
matrix, it has a complete set of orthonormal eigenvectors { fi}i = 1,…,N.
If G is connected, the associated eigenvalues {λi}i = 1,…,N are real non-
negative with the unique smallest eigenvalue being zero (Chung,
1997). We assume that the eigenvalues are increasingly sorted as 0 =
λ1 ≤ λ2 ≤ … ≤ λN. By eigendecomposition, we can decompose the
graph Laplacian into L = FΛFT, where Λ is diagonal with Λii = λi being
the ith smallest eigenvalue of L and the ith column of F, fi, is the associ-
ated eigenvector.

A signal x defined on the vertices of graphG is a function fromV toℝ.
This graph-signal could be expressed as a vector in ℝN with the ith ele-
ment of the vector being a real value assigned to the ith vertex. We
will also denote this vector by x and use x(i) to indicate both the func-
tion value at the ith vertex and the ith element of the vector. Examples
of the graph-signal are in Fig. 1. In practice, we could view PET scans or
fMRI time series as graph-signals defined on vertices of the brain con-
nectivity network that is constructed by connecting edges between dif-
ferent brain regions or image voxels. For a graph-signal x, the graph
Laplacian behaves as a difference operator on it:

Lxð Þ ið Þ ¼
X
j�i

Wi j x ið Þ−x jð Þ½ �; ð1Þ



Fig. 1. A same graph-signal displayed on two different binary graphs that both have 30 vertices but contain different edges. The color of the vertex denotes the signal value at the corre-
sponding location.
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where j ~ imeans that vertex j is connected to vertex i. Due to the anal-
ogy between graph Laplacian and continuous Laplace operator, we are
able to extend the classical Fourier transform to a more general form
for graph-signals. We elaborate this notion in the next subsection.

Frequency analysis of graph-signals

As an efficient way of processing traditional signals, the classical
Fourier transform expands a continuous function x of time in terms of
the complex exponentials (Oppenheim and Willsky, 1997), namely

~x ξð Þ ¼de f x; e2πiξt
D E

¼
Z
ℝ
x tð Þe−2πiξtdt; ð2Þ

where 〈⋅, ⋅ 〉 denotes inner product. We adopt ~x to represent the Fourier
transform of x.

The Fourier basis functions are eigenfunctions of the one-
dimensional Laplace operator Δ:

−Δ e2πiξt
� �

¼ −
∂2

∂t2
e2πiξt ¼ 2πξð Þ2e2πiξt : ð3Þ

Similarly, for a signal x on the vertices of G, we can define its graph
Fourier transform (GFT) ~x as the expansion of x in terms of the eigenvec-
tors of the graph Laplacian (Shuman et al., 2013):

~x λlð Þ ¼de f x; f lh i ¼
XN
i¼1

x ið Þ f �l ið Þ: ð4Þ

Accordingly, the inverse graph Fourier transform is given by

x ið Þ ¼
XN
l¼1

~x λlð Þ f l ið Þ: ð5Þ

More concisely, the GFT of x could be written as the projection of x
onto the eigenvectors of the graph Laplacian in a matrix form

~x ¼ FTx; ð6Þ

where elements of ~x and x are indexed by graph Laplacian eigenvalues
and vertices, respectively. When the context is clear, we could also
write ~xðλiÞ and x(i) as ~xi and xi accordingly. Since FFT = I, the inverse
GFT isx ¼ F~x. TheGFT is a generalization of the traditional Fourier trans-
form in the context of graph analysis. For example, when G is a cycle
graph, the eigenvectors of its Laplacian form an exact discrete Fourier
transform matrix (Agaskar and Lu, 2013), and thus discrete Fourier
transform could be considered as a special case of GFT. Unlike the
classical Fourier transform, the GFT depends on the specific graph
structure. In addition, because it can adapt to different data with
data-dependent graph structures, it yields better results in image
compression (Hu et al., 2015b), denoising (Meyer and Shen, 2014)
and deblurring (Kheradmand andMilanfar, 2014) as compared to tradi-
tional methods. Essentially, we can also consider the GFT as a graph-
based orthonormal transform based on Eq. (6). However, to be consis-
tent with the literature of signal processing on graphs, we refer to this
orthonormal transform as the GFT.

In classical Fourier analysis, the eigenvalues {(2πξ)2}ξ ∈ℝ in Eq. (3)
are also known as frequencies, since when ξ increases the associated
complex exponential eigenfunction will oscillate more rapidly. In
graph-signal analysis, the eigenvalues and eigenvectors of graph
Laplacian provide a similar concept of frequency. The graph Laplacian
eigenvectors associated with low frequencies λi vary slowly across the
graph, meaning that if two vertices are linked by an edge with a large
weight, the values of the eigenvector at those positions tend to be
close. Particularly, for connected graphs, the Laplacian eigenvector f1 as-

sociatedwith λ1= 0 is constant and equal toN−1
2 at each vertex. In con-

trast, the eigenvectors associated with higher eigenvalues change more
rapidly and are more likely to have dissimilar values on vertices con-
nected by an edge with a big weight.

To quantify the smoothness of a graph-signal x with respect to
the intrinsic structure of the graph, we propose the graph Laplacian
quadratic form:

VG xð Þ ¼ xTLx ¼ 1
2

X
i; j

Wi j x ið Þ−x jð Þð Þ2: ð7Þ

This quantity is small when x has similar values at neighboring ver-
tices connected by an edge with a large weight, meaning that x is
smooth. By the Courant–Fischer Theorem (Horn and Johnson, 1990),
we could define the eigenvalues of the Laplacian recursively via the Ray-
leigh quotient as

λ1 ¼ min
xk k2¼1

xTLx
� �

; ð8Þ

λl ¼ min
xk k2 ¼ 1;

x⊥span f 1;⋯; f l−1f g

xTLx
� �

; l ¼ 2;3;⋯;N; ð9Þ

where the minimizer of the lth problem is the eigenvector fl.
Eqs. (8) and (9) interpret why the graph Laplacian eigenvectors associ-
atedwith lower eigenvalues are smoother, and give another reasonwhy
we can treat the graph Laplacian spectrum as graph-signal frequencies.

Due to the above nature of GFT, we can decompose brain imaging
data into linear combinations of many templates which correspond to
graph Laplacian eigenvectors of the brain network. After that, image
denoising may be performed by suppressing higher frequency compo-
nents in the image (Gadde et al., 2013; Meyer and Shen, 2014). We
may also compare two groups of subjects more robustly by extracting
features from the GFT coefficients, similar to the multi-resolution
brain network analysis via graph wavelet in (Kim et al., 2013).
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Graph-signal models

For classifying graph-structureddata, it is necessary to introduce sta-
tistical signalmodels on graphs before carrying out hypothesis tests. Ac-
cording to the property of GFT coefficients of real data, we consider
three graph-signal models, i.e., bandlimited graph-signals, constrained
graph-signals, and probabilistic graph-signals to facilitate hypothesis
tests which determine whether a signal is embedded in a given graph
structure.

Bandlimited graph-signals
In many applications, the GFT coefficient ~xi of the signal x is more

likely to be close to zero as the associated Laplacian eigenvalue λi

grows, due to the smoothness of x on the graph. We explain the mech-
anism of signal smoothness for brain imaging data through a network
diffusion model in the Discussion section.

Analogous to the DFT frequencies of traditional signals, we call the
set { fi}i = 1,⋯,N frequency components of the GFT. We can define
bandlimited graph-signals as signals that are only supported on lower
frequency components corresponding to the first few smaller Laplacian
eigenvalues, namely x ∈ ℝN with its GFT ~x satisfying

~xi ¼ 0; forall i N K; ð10Þ

where ~xi ¼de f ~xðλiÞ is the GFT coefficient associated with the graph
Laplacian eigenvalue λi and K ∈ {1, 2,⋯, N}.

Constrained graph-signals
To improve the performance of a hypothesis test, prior information

is often applied. Here we incorporate prior knowledge about the signal
x via a constraint on its GFT coefficients, namelyCð~xÞ≤r for a given r N 0.
We specify the constraint function as the followingnormalized quadrat-
ic form

C ~xð Þ ¼
XN

i¼1
αi~x

2
iXN

i¼1
~x2i

; ð11Þ

where {αi}i = 1,⋯,N is a set of non-negative penalty weights. Sincewe be-
lieve that GFT coefficients associated with higher eigenvalues are less
informative, we could impose larger penalty weights on those GFT
coefficients.

There is a special case of Eq. (11) when αi= λi for i=1,⋯, N. In this

case, because xTLx ¼ ~xTΛ~x ¼ ∑N
i¼1λi~x

2
i , the constraint function can be

expressed as

C ~xð Þ ¼ xTLx
xTx

; ð12Þ

which is a normalized version of the smoothness measure (Eq. (7)).
Under this circumstance, the constrained graph-signals are essentially
signals with bounded variations on the graph. It is easy to see that this
constraint function is bounded below and above by zero and the maxi-
mumgraph Laplacian eigenvalue, respectively. IfCð~xÞ≤r, we can rewrite

the requirement to∑N
i¼1λi~x

2
i ≤r∑

N
i¼1~x

2
i , i.e.,∑

N
i¼1ðλi−rÞ~x2i ≤0. Typically,

r is less than the maximum eigenvalue λN. We may further reshape the

condition to ∑λiNrðλi−rÞ~x2i ≤∑λi ≤ rðλi−rÞ~x2i . Hence, to satisfy the con-
straint of smoothness on graph, we should ensure that the signal has a
higher energy concentration (the energy is measured by the square of
GFT coefficients) on the lower frequency components compared with
the higher frequency components.

Probabilistic graph-signals
In the above two signal models, we treat the signal as deterministic

but unknown due to noise. From a Bayesian perspective, we can also as-
sume that the signal is randomly generated from a prior distribution.
We express the distribution in the transformed domain as the following
general form

ℙ ~xð Þ∝ exp −
XN

i¼1
αi~x

2
i

� �
; ð13Þ

withαi N 0 denoting the penalty on the energy of the ith frequency com-
ponent. Specially, when αi = λi for i = 1, ⋯, N, the distribution can be
rewritten as

ℙ ~xð Þ∝ exp −~xTΛ~x� �
; ð14Þ

which is equivalent to ℙ(x) ∝ exp(−xTLx) and can be viewed as a de-
generate Gaussian distribution. Noticing the identity (Eq. (7)), we can
see that Eq. (14) is a reasonable signal model for brain imaging data,
since functionally correlated brain regions should yield similar mea-
surements. We will construct MSD on graphs in the next section
based on the above graph-signal models.

Decision models

Let y ∈ ℝN be an observed signal defined on a potential graph. There
are two hypothesesH0 andH1, representing that y is embedded in ei-
ther graph G0 or G1, with the associated Laplacian matrix L0 or L1, re-
spectively. The graphs are defined on the same set of vertices but
containing different edges. Fig. 1 gives an example of a same graph-
signal on two different binary graphs. Our goal is to formulate hypothe-
sis tests to decide which graph fits the signal more accurately. We refer
to the procedure asmatched signal detection (MSD) on graphs.

Tomodel real challenges,we consider y as a contaminated version of x
with additive Gaussian noise.We assume y= x+ nwithn � N ð0;σ2IÞ.
Supposing that the eigendecomposition of Lj possesses the form Lj =
FjΛjFjT under H j for j = 0, 1, from Eq. (6) we can write the hypothesis
test as

H0 : y ¼ F0~xG0 þ n vs:H1 : y ¼ F1~xG1 þ n; ð15Þ

where ~xG0 and ~xG1 indicate the GFT transform onG0 andG1 respectively.
Given the observation y, the general form of the likelihood ratio test
(LRT) is

‘ Θ1; yð Þ
‘ Θ0; yð Þ ¼

ℙ yjH1ð Þ
ℙ yjH0ð Þ ≷

H0

H1 π0

π1
¼ η; ð16Þ

where ‘(⋅) indicates the likelihood function, Θj and πj are the set of pa-
rameters and prior probability underHj for j= 0,1, respectively. In ac-
cordance with the signal models presented in the last section, we
present more concrete versions of (16) in terms of different types of
MSD on graphs.

Simple-MSD on graphs
For bandlimited graph-signals, the MSD on graphs follows immedi-

ately from the conventional matched subspace detection (Scharf and
Friedlander, 1994), where the subspace is spanned by a subset of the ei-
genvectors of the Laplacian matrix under each hypothesis. For conve-
nience, we refer to this test as SMSD. Denote by ỹi,0 and ỹi,1 as the ith
GFT coefficient of y on graph G0 and G1 respectively. If we assume that
the noise variance is unknown but could be estimated by its MLE, we
have the test statistic

TSMSD ¼
XK

i¼1
~y2i;0−~y2i;1
� �

; ð17Þ

where K indicates the maximum frequency of the signal. For the sake
of completeness, we include the proof of Eq. (17) in Appendix A. In
other words, to decide which graph the signal belongs to, one simply
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compares the projection energy of the observation on the first few
graph Laplacian eigenvectors of each hypothetic graph.

Constrained-MSD on graphs
Weadopt CMSD as a shorthand for constrained-MSDproblem,when

the constrained graph-signal model in the last section is considered. By
multiplying F0T and F1T on both sides of each of the two equations in (15)
respectively, we obtain

~y ¼ ~xþ ~n; ð18Þ

where the tilde sign means the GFT on the hypothetic graph. Since F
is orthonormal, ñ is still white Gaussian noisewith identical distribution
asn. For smooth graph-signals satisfying the constraintCð~xÞ≤rwithCð~xÞ
specified by Eq. (11), the test statistic can be written as

TCMSD ¼
XN

i¼1

τ2i;0
1þ τi;0
� �2 ~y2i;0− τ2i;1

1þ τi;1
� �2 ~y2i;1

" #
; ð19Þ

where ỹi,j is the ith GFT coefficient of y on graph G jð j ¼ 0;1Þ and τj(j =
0, 1) is a quantity dependent on the respective GFT of y, the noise level,
and the parameters of the signal model. Detailed derivations of Eq. (19)
are provided in Appendix B. From Eq. (19), we find that the test is a
weighted energy detector where τi,j embodies the deviation between
the ith estimated GFT coefficient and the corresponding GFT coefficient
of the observation. When there is no noise or the observed signal y
satisfies the constraint of the variation on graph G j , we have τi,j = 0
for i = 0, …, N meaning that y does conform to the constrained graph-
signal model. This is analogous to the case where the observed signal
perfectly lies in the subspace of the first K graph Laplacian eigenvectors
in the bandlimited graph-signal model.

Probabilistic-MSD on graphs
A more general MSD is to consider random graph-signals, which

gives rise to the probabilistic-MSD (PMSD) on graph. We assume that ~x
has a probability distribution function (p.d.f.)hjð~xÞunderH j. Due to the
independence of the noise on the signal, the likelihood ratio (LR) is

LR ¼

Z
h1 ~y‐~nð Þg1 ~nð Þd~nZ
h0 ~y‐~nð Þg0 ~nð Þd~n

; ð20Þ

where gj(⋅) denotes the p.d.f. of the white Gaussian noise under H j .
If the GFT coefficients of the true signal follow a Gaussian distribution
N ð0;Σ jÞ, the test statistic would be ỹT(Φ0

−1 − Φ1
−1)ỹ, where Φj =Σj + σ 2I for j = 0,1. In particular, if we apply the degenerate Gaussian

distribution ((14)) to the true signal, we will have hjð~xÞ∝ expð−~xTΛ j~xÞ.
It turns out that ỹ is distributed as N ð0;Λ†

j þ σ2IÞ, when viewing gj as

a degenerated Gaussian distribution. Note that Λj
†
represents the

pseudoinverse of Λj. When σ is known, the LR test statistic reduces to

TPMSD ¼
XN

i¼1
βi;0~y

2
i;0−βi;1~y

2
i;1

� �
; ð21Þ

where β1, j = σ−2 and βi,j = (λi,j−1 + σ2)−1 when i ≥ 2, for j = 0, 1. We
can also replace σ in Eq. (21) with its MLE if σ is unknown. In a special
noise-free case, ỹ follows a degenerate Gaussian distribution (Eq. (14))
and the test statistic becomes yT(L0 − L1)y, which is simply the differ-
ence between the signal variations on the two graph structures.
Results

Numerical simulations

We have evaluated the proposed MSD rules on small-world net-
works, which are simplified yet effective models of brain connectivity
structures (Bassett and Bullmore, 2006; He et al., 2007; Stam et al.,
2007). A small-world network is characterized by dense local cliques
of connections between neighboring vertices and a short path length
between any pair of vertices due to the existence of few long-range con-
nections. Brain anatomical and functional networks have a small-world
topology that supports both segregated and integrated information pro-
cessing with a minimized cost (Bassett and Bullmore, 2006). Moreover,
certain brain diseases like AD could cause the alternation of this net-
work structure before other notable symptoms emerge (Sanz-Arigita
et al., 2010; Supekar et al., 2008). Sensitive biomarkers derived from
brain connectivity networks have been used for detecting AD at an
early stage successfully (Balthazar et al., 2014; Wee et al., 2012). For a
comprehensive review on this direction, refer to (Gomez-Ramirez and
Wu, 2014). Our MSD schemes jointly model the alternation of network
topology and the distribution of the neuroimaging data in order to
achieve better classification performance. We classified data on two
small-world networks specified by the Watts–Strogatz model (Watts
and Strogatz, 1998), using the proposed schemes in the last section.

As shown in Fig. 2, the networks were constructed from a random
rewiring of a ring graph with 40 vertices. First, we created a ring
graph in which each vertex was connected to the same number of
nearest neighbors on each side. Then,we removed each edgewith a uni-
form independent probability and rewired it to build an edge between a
pair of vertices that were chosen uniformly at random. In our tests, we
considered two scenarios in terms of the network structure: in the
first case, the number of edges associated with each vertex namely the
vertex degree d and the rewiring probability pr were (12, 0.1) under
H0, and (20, 0.4) underH1, respectively; in the second case, the vertex
degree and the rewiring probability were (12, 0.1) under both H0 and
H1. Meanwhile, we assumed the GFT coefficient distributions of the sig-
nals followed either an exponential decay or a step function. In the for-
mer case, theGFT coefficientswere distributed asN ð0;ΣÞwith∑ being
a diagonal matrix and∑ii=exp(−i / 5) under both hypotheses; in the
latter case,∑ii=1 for i=1,… ,12 and∑ii=0.1 for i=13,… ,40. To
mimic real challenges, Gaussian noise with different standard devia-
tions σ = 0.3 or 0.5 was added to the original signals.

Under the above different settings, we compared our methods with
traditional classifiers. For the SMSD, we projected the noisy signal on
the first 12 graph Laplacian eigenvectors; for the CMSD, we imposed
piecewise-constant penalty weights on the GFT amplitudes; for the
PMSD,we assumed that the distribution of the signal was known. To ac-
count for the randomness of the networks and signals, we ran each ex-
periment 100 times for each algorithm and plotted the mean receiver
operating characteristic (ROC) curve in Fig. 3. The average and standard
deviation of the area under the curve (AUC) for each algorithm in differ-
ent tests are given in Table 1. From the figure and the table, we observe
that the MSD schemes consistently outperform the compared algo-
rithms namely PCA, SVM, LDA, as well as kernel PCA and kernel SVM,
which are denoted by KPCA and KSVM respectively. In the KPCA and
KSVM, Gaussian RBF kernel was adopted. We find that the result of
the KPCA or KSVM is better than that of the PCA or SVM accordingly, al-
though the variance of the AUC of the KPCA or KSVM is larger than that
of the PCA or SVM. The reason that the AUC of every classic approach is
significantly less than that of any MSD schememight be its inefficiency
of exploiting the structure of the signals particularly with noisy data. In
Figs. 3(a) and (b), we see that when the GFT coefficients of the true sig-
nals follow either an exponential decay or a step function, our methods
achieve much better performance than the classic classifiers. Further-
more, from Figs. 3(a) and (c), we find that although large noise in the
data leads to some decline of the performance of the MSD schemes,



Fig. 2.Two randomrealizations of the small-world networks used in the numerical simulations. Both networks have 40 vertices (red circles) and theweight of every edge (blue line) is one.
In (a), the degree of each vertex is d = 12 and the rewiring probability of the edges is pr = 0.1; In (b), the vertex degree and rewiring probability are d = 20 and pr = 0.4, respectively.
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the proposed schemes still outperform the compared methods when
the distributions of the network structure and signal GFT coefficients
are fixed. From Figs. 3(a) and (d), we observe that when the hypothetic
networks have the same distribution, the AUC of each MSD scheme
Fig. 3. ROC curves for the proposedMSD approaches and other classic classificationmethods bas
vertices. The vertex degree and rewiring probability in (a–c) are (12,0.1) forG0 and (20, 0.4) for
and G1. Signals in (a) & (c–d) have an exponential decay of GFT coefficients on the correspond
KSVM denote the kernel PCA and kernel SVM correspondingly; σ indicates the standard devia
becomes lower than that of the corresponding scheme when the net-
works have different distributions. In the above simulations, we opti-
mally tuned the parameters of the MSD and the compared algorithms
by using grid search. For the SMSD, we chose the maximum frequency
ed upon graph-signals on two randomly generated small-world networks composed of 40
G1, respectively; the vertex degree and rewiring probability in (d) are (12,0.1) for bothG0

ing graph, while the GFT coefficients of the signals in (b) follow a step function. KPCA and
tion of the Gaussian noise.



Table 1
Area under the curve (AUC) for each classification method in the simulations. Column
(a–d) correspond to the results of repetitive running of the experiments with the graph-
structural parameters and signal models specified in Figs. 3(a–d), respectively. Mean
and standard deviation (showing in parentheses) of the AUC obtained from 100 repeti-
tions of each algorithm are listed.

(a) (b) (c) (d)

SMSD 0.9799 (0.0059) 0.9826 (0.0034) 0.8500 (0.0169) 0.9109 (0.0220)
CMSD 0.9814 (0.0057) 0.9869 (0.0036) 0.8683 (0.0177) 0.9209 (0.0180)
PMSD 0.9859 (0.0045) 0.9901 (0.0027) 0.8831 (0.0144) 0.9348 (0.0171)
PCA 0.5091 (0.0425) 0.5083 (0.0506) 0.5027 (0.0363) 0.5063 (0.0233)
SVM 0.5798 (0.0588) 0.6088 (0.0771) 0.5705 (0.0909) 0.5953 (0.0741)
LDA 0.5887 (0.0524) 0.6132 (0.0347) 0.5287 (0.0372) 0.5779 (0.0428)
KPCA 0.6266 (0.0605) 0.6358 (0.0683) 0.5821 (0.0492) 0.6078 (0.0348)
KSVM 0.7146 (0.0663) 0.7446 (0.0830) 0.6556 (0.0941) 0.7095 (0.0797)
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of the bandlimited graph-signal K as 12. For the CMSD, the upper bound
r of the constraint function was equal to the 12th eigenvalue of the re-
spective graph Laplacian. In Figs. 3(a) and (c–d), we chose the penalty
weights {αi}i = 1,⋯,40 in Eq. (11) as αi = 1 for i = 1, …, 10; αi = 100
for i = 11, …, 20; αi = 400 for i = 21, …, 30; and αi = 1000 for i =
31, …, 40. In Fig. 3(b), we selected αi = 1 for i = 1, …, 12; and αi =
100 for i = 13, …, 40. We note that the performance of the CMSD
scheme is superior to that of the SMSD and inferior to that of the
PMSD in the above four experimental settings. (See Fig. 3.)

PIB-PET and R-fMRI study

We then applied our MSD theory to the classification of subjects in
two brain imaging data sets: a PIB-PET data set from the neuroimaging
studies in aging at the Massachusetts General and Brigham and
Women's Hospitals (Sepulcre et al., 2013) and a R-fMRI data set from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu).

As shown in Table 2, the PIB-PET data set consists of 30 AD patients
and 40 NC subjects. The detailed criteria for AD and NC subjects as well
as the experimental procedures were described in Sepulcre et al.
(2013). The PET scans were acquired on a Siemens/CTI ECAT HR+ PET
scanner at Massachusetts General Hospital as follows. Amyloid imaging
was performed with N-methyl-11C-2-(4-methylaminophenyl)-6-
hydroxybenzothiazole (PIB). 11C-PIB was prepared as specified by
Mathis et al. (2002). Briefly, after a transmission scan, 10–15 mCi 11C-
PIB was injected as a bolus intravenously, which was followed immedi-
ately by a 60-min dynamic PET scan in 3D mode (63 image planes,
15.2 cm axial field of view, 5.6 mm transaxial resolution and 2.4 mm
slice interval; 69 frames: 12 × 15 s, 57 × 60 s). PIB-PET data were recon-
structed with ordered set expectation maximization, corrected for at-
tenuation, and each frame was evaluated to verify adequate count
statistics and absence of head motion. Individual 11C-PIB-PET scans
were spatially normalized using the warping information derived
from individual stereotactic normalization of the structural MRI using
SPM 2.

PET neuroimaging data were downsampled from the normalized
2 mm isotropic voxels to 8 mm isotropic voxels for computational
efficiency. Each image has a dimension of 20 × 24 × 18 with
8 mm × 8 mm × 8 mm voxels. In the data preprocessing step, we first
masked out the area outside of the brain. Next, we applied Automated
Table 2
Participant demographics. AD = Alzheimer's disease; NC = normal control subjects; EMCI =
Examination; CDR = Clinical Dementia Rating. The age and education are measured in years.

Sample size Avg. age (SD)

AD with PIB-PET 30 (13 male) 73.03 (7.99)
NC with PIB-PET 40 (14 male) 76.15 (8.04)
EMCI with R-fMRI 30 (14 male) 72.15 (7.31)
NC with R-fMRI 20 (8 male) 75.16 (6.10)
Anatomical Labeling (AAL) (Tzourio-Mazoyera et al., 2002) to map the
effective voxels to 90 VOIs. The data were then averaged within each
VOI for further analysis. Among all the VOIs, we picked out 42 regions
that were considered to be potentially related to AD (Azari et al.,
1992). Table 1 of Huang et al. (2009) listed the names of the selected
VOIs and their corresponding lobes.

The R-fMRI data set contains 30 EMCI and 20 NC subjects from
ADNI2 study which is the latest phase of the ADNI project. The ADNI2
includesmany new volunteers in the earliest stages of cognitive impair-
ment, namely EMCI subjects. Compared with MCI in late stages, EMCI
does not have dysfunctions in logical memory and delayed recall. The
subject inclusion criteria and the data acquisition/pre-processing were
documented in Xiang et al. (2013). All the R-fMRI data were collected
using 3.0 T MRI equipment (Philips, the Netherlands). During the scan-
ning, subjectswere conscious, clear headed and stationary. Scan param-
eters were as follows: repetition time = 3000; slice thickness = 3.3;
field strength = 3.0; echo time = 30.0. Other parameters can be
found on the ADNI website (adni.loni.ucla.edu). R-fMRI data were pre-
processed as previously described (Chao-Gan and Yu-Feng, 2010). In
brief, time-slice correction and motion correction were applied to the
data set, so that the head motion was limited to less than 2 mm or 2°.
The corrected images underwent spatial standardization, and were
mapped toMNI standard spacewith 3mmvoxels. Finally, the registered
images were filtered at low frequency (0.01–0.08 Hz), to reduce low-
frequency drift and high-frequency biological noise. Similarly to what
we did with the PET data, we mapped the whole-brain to 90 VOIs ac-
cording to the AAL template.

AD/NC classification with PIB-PET

As an initial step,we built a similarity graph overN=42 regions that
are potentially related to AD for each subject group. The selection of a
small number of VOIs could prevent the weighted adjacency matrix
from being too rank deficient and reduce the risk of overfitting the clas-
sifier. Supposewe haveM subjects in a given group and denote by Xij the
average PIB-PET observation in the ith brain region of subject j. To con-
struct a weighted graph over the N brain volumes, we have assigned a
positive weightWij to the edge between the ith and jth VOIs as follows

Wij ¼ exp −
X i−X j
�� ��2

2

ρ2

 !
; ð22Þ

where Xi=(Xi1,…, XiM) is the ith row of the datamatrix X and ρ N 0 is a
scaling factor. The similarity metric in Eq. (22) is known as a Gaussian
RBF kernel (Hofmann et al., 2008). This kernel function allows us to ap-
proximate the geodesic distance on themanifold of the brain regions by
Euclidean distanceswith nearby neighbors. The factor ρ controls the no-
tion of proximity in the sense that if ‖Xi − Xj‖2 ≫ ρ thenWij = 0 and if
‖Xi − Xj‖2 ≪ ρρ thenWij=1. After building graphs for both groups, we
projected a newly observed signal onto the sets of graph Laplacian ei-
genvectors associated with the two subject groups. The decision was
made by comparing the test statistic Eq. (17) of SMSD against zero.
For clarity, we present the major steps of our data processing and hy-
pothesis tests in Fig. 4.
early mild cognitive impairment; SD = standard deviation; MMSE = Mini-Mental State

Avg. education (SD) Avg. MMSE (SD) Avg. CDR

17.5 (1) 25 (1.63) 1
16.24 (2.88) 29.05 (1.10) 0
17.07 (2.56) 26.30 (3.08) 0.5
16.11 (2.11) 28.82 (0.82) 0



Fig. 4.Major steps (from top to bottom) of theMSD implementation for AD network classification.WNC,WAD are the adjacencymatrices of theweighted graphs constructed from the im-
aging data listed in the first row; whileWth

NC, Wth
AD are their corresponding thresholded versions with 135 edges. The projection energy distributions of a signal on the two sets of eigen-

vectors of the graph Laplacians are illustrated in the last row, where the graph on the left matches the signal better. Since the first graph Laplacian eigenvectors of the two graphs are the
same, we only show the projection energy on the eigenvectors beyond the first one.
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Weperformed leave-one-out cross-validation (LOOCV) and evaluat-
ed the classification accuracy of the proposedMSDongraphs for param-
eter optimization. Specifically, each time we removed one subject to be
tested from all the data and presumed that the status of the rest of the
subjects were known. The accuracy of the classifier is defined by the
proportion of correct decisions among the total number of tests. Follow-
ing the repeated grid-search cross-validation in Krstajic et al. (2014), Al-
gorithm 1, we tuned the parameters of each classifier as follows: first,
we created a grid of points in the parameter vector space with each
point indicating a certain combination of all the hyperparameters in
the classifier; then, we carried out the LOOCV under each parameter
vector and obtained the corresponding accuracy. We chose the param-
eter combination that yielded the maximum accuracy. If there were
multiple parameter vectors for which the accuracy was maximum,
thenwe chose the onewith the lowestmodel complexity. Here the scal-
ing factor ρ in Eq. (22) and the maximum frequency of the bandlimited
graph-signalK in Eq. (17)were set to be 1 and 5, respectively.We report
the cross-validated results for the classifier. Fig. 5 illustrates the projec-
tion errors, namely the residual energy of the PIB-PET data after being
projected onto the first 5 graph Laplacian eigenvectors, when the sub-
ject belongs to the AD group and NC group respectively. The decision
error rates in Figs. 5(a) and (b) are 0/30 and 2/40 accordingly.

In addition, we classified the AD/NC data by using three frequently
employed methods: PCA, SVM and LDA. Similarly to the MSD, we
tuned the parameters by cross-validation to optimize the performance
of each method. For PCA, we used the right singular vectors of the



Fig. 5. Projection errors in the leave-one-out tests when the true data is from theADgroup (left) or NC group (right), with blue/yellow bars showing the residual energy of a certain subject
after being projected on AD/NC networks respectively. Red ellipses indicate decision errors made at certain subjects.
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data matrix X as an orthogonal basis to carry out the classical matched
subspace detection. The associated miss-detection and false-alarm
rates of PCA were 4/30 and 7/40 accordingly. For SVM, we constructed
a hyperplane in a high-dimensional space so that the training data
pointswere separated by the largestmargin.We thendecided the status
of a new subject by checking the side of the hyperplane onwhich it falls
(Cristianini and Shawe-Taylor, 2000). SVM gave the two types of error
rates 3/30 and 5/40, respectively. In machine learning, LDA is another
method to find a linear combination of features which characterize or
separate two or more classes of objects or events. We implemented it
in the following two steps (McLachlan, 2004): first, we found a linear
transformation to maximize the ratio of the variance between the clas-
ses to the variance within the classes; then, we classified a new data
point according to the nearest centroid in the transformed space. With
LDA, we obtained 4/30 and 2/40 as miss-detection and false-alarm
rates, which were slightly better than those of SVM and PCA. Moreover,
since Gaussian RBF kernel was used in the MSD, we also implemented
kernel PCA and kernel SVM with Gaussian RBF kernel (Cristianini and
Shawe-Taylor, 2000; Hofmann et al., 2008). We refer to these two
kernel-based methods as KPCA and KSVM, respectively. The above re-
sults were obtained by assuming an equal prior of each hypothesis in
(16), namely η = 1. Subsequently, we changed η to get the ROC curve
for every classifier in Fig. 6(a). In Table 3(a), we display the accuracy,
sensitivity, specificity, and the area under the curve (AUC) of the hy-
pothesis tests. It shows that the AUC of MSD is significantly (p ≤ 0.05)
higher than that of the compared algorithms.

To evaluate our methods more comprehensively, we performed ad-
ditional experiments by using repetitive 10-fold stratified cross-
validation (CV). Specifically, we randomly partitioned the subjects
into 10 equal-sized folds, making sure that each fold contained the
same proportion of subjects from a certain subject group. Out of the
10 folds, a single fold was retained as the validation data for testing
the model, and the remaining 9 folds were used as training data. In
each CV iteration, we implemented another nested CV on the training
data in order to tune the parameters of the classifier. The details of
this repeated stratified nested CV are given in Krstajic et al. (2014), Al-
gorithm2. By repeating the above 10-fold CVwith different partitions of
the subjects, we can obtain multiple ROC curves for each classifier.
Fig. 6(c) displays the averaged ROC curves for MSD and the compared
methods after running the 10-fold CV 100 times. From the figure, we
find that our method still outperforms the other approaches, although
its average AUC is slightly lower than that obtained in the LOOCV. The
average AUC for each of the other methods is also lower than the corre-
sponding AUC in the LOOCV. Meanwhile, from Table 3(a), we observe
that KPCA has a better performance than PCA in terms of the mean ac-
curacy and mean AUC, while KSVM has a higher mean accuracy but a
slightly lower mean AUC when compared with SVM.

We also compared the first few graph Laplacian eigenvectors of the
AD and NC networks constructed from the two groups of PIB-PET data.
In Figs. 7(a–d), we plotted the second and third eigenvectors of the
associated Laplacian matrices both on the brain mesh (above row) and
as a sequence against the brain region index (bottom row). Very inter-
estingly, we observe that the patterns of the associated eigenvectors
are similar between AD and NC groups, signifying the common features
among all the elder subjects. Meanwhile, amplitudes of the eigenvectors
in the following five regions are significantly larger than those in other
regions: posterior cingulate right, hippocampus left, parahippocampal
gyrus left, andmiddle temporal pole left/right.When comparing the ab-
solute difference between the first few corresponding Laplacian eigen-
vectors of the AD group and NC group, we find that those five regions
are also the most distinctive ones in Figs. 7(e–h). This coincides with
the findings that cingulate gyrus, hippocampus area, and temporal
areas are the most prominently, and perhaps the earliest, effected sites
of AD (Baron et al., 2001; Braak and Braak, 1996; Huang et al., 2002).

EMCI/NC classification with R-fMRI

We further applied ourMSDmethod to a more challenging discrim-
ination problem, namely classifying EMCI and NC subjects with R-fMRI
data. In order to reduce the dimension of the original data, we divided
the whole-brain into 90 regions according to the AAL template
(Tzourio-Mazoyera et al., 2002). Then, we averaged the time sequences
of all voxels in the same brain region, so that the data reduced to a 90× T
matrix for every subject with T = 130 denoting the number of time
points for each R-fMRI scan. To construct the graph for each subject
group, we concatenated the R-fMRI data into a 90 × (TM) data matrix
with M being the number of subjects and normalized the rows of this
matrix so that each row had a unit norm.

Next, we assigned the weight between the ith and jth brain regions
according to Eq. (22) with ρ=2, where Xi is the ith row of the normal-
ized data matrix X.

Using PMSD with the degenerate Gaussian prior Eq. (14),
i.e., comparing the variations of newly observed data on two hypothetic
graphs, we obtained the ROC curve based on leave-one-out tests in
Fig. 6(b). Specifically, we treated the R-fMRI observations on the N =
90 brain VOIs at each time step t = 1, …, T as a graph-signal on the
brain networks of the EMCI and NC groups. Then, we computed the var-
iations of each graph-signal on the networks of these two groups ac-
cording to Eq. (7). By comparing the total variations of the T graph-
signals from a given subject on the two brain networks, we decided
which subject group the testing subject belonged to. When we used
PCA, SVM and LDA, we classified the subjects based on the R-fMRI ob-
servations on all the VOIs as follows: first, we reshaped the multi-
dimensional R-fMRI time series observed on the brain VOIs to a data
vector in ℝN × T; then, we trained the classifiers with all the training
data vectors and classified a new subject according to the criteria that
we introduced in the PIB-PET experiments.

In addition, to fully demonstrate the advantage of our method, we
have compared it with KPCA/KSVM and PCA/SVM/LDA based on the
connectivity measures. As reported in the literature (Chen et al., 2011;



Table 3
Performance measurements of the classifiers evaluated by both LOOCV and 10-fold CV. In the R-fMRI data classification, PCA+, SVM+, LDA+ indicate applying PCA, SVM, LDA to the
correlation of the R-fMRI data. ACR, SEN, SPE, and AUC are the abbreviations for accuracy, sensitivity, specificity, and area under the curve, respectively. For 10-fold CV, mean and standard
deviation (in parentheses) of the measurements are listed.

LOOCV on PIB-PET data 10-fold CV on PIB-PET data

ACR SEN SPE AUC ACR SEN SPE AUC

(a) PIB-PET data of 30 AD and 40 NC subjects
MSD 0.9714 1.0000 0.9500 0.9988 0.9245 (0.0153) 0.9759 (0.0256) 0.8860 (0.0316) 0.9612 (0.0142)
PCA 0.8429 0.8667 0.8250 0.8737* 0.7687 (0.0173) 0.6537 (0.0315) 0.8549 (0.0350) 0.7996 (0.0215)
SVM 0.8857 0.9000 0.8750 0.8975* 0.8233 (0.0149) 0.7946 (0.0174) 0.8448 (0.0224) 0.8891 (0.0111)
LDA 0.9143 0.8667 0.9500 0.9358* 0.8731 (0.0177) 0.7852 (0.0374) 0.9391 (0.0330) 0.8994 (0.0123)
KPCA 0.8571 0.9333 0.8000 0.9133* 0.8199 (0.0239) 0.8467 (0.0919) 0.7997 (0.0556) 0.8242 (0.0284)
KSVM 0.8714 0.9000 0.8500 0.9075* 0.8597 (0.0234) 0.7839 (0.0950) 0.9166 (0.0751) 0.8841 (0.0226)

LOOCV on R-fMRI data 10-fold CV on R-fMRI data

ACR SEN SPE AUC ACR SEN SPE AUC

(b) R-fMRI data of 30 EMCI and 20 NC subjects
MSD 0.9000 0.8667 0.9500 0.9483 0.8862 (0.0297) 0.8598 (0.0547) 0.9060 (0.0407) 0.9147 (0.0236)
PCA 0.5800 0.5667 0.6000 0.6183** 0.6264 (0.0338) 0.5534 (0.0829) 0.6811 (0.1138) 0.6043 (0.0493)
SVM 0.5800 0.6000 0.5500 0.5466** 0.6149 (0.0271) 0.3866 (0.0601) 0.7860 (0.0426) 0.5493 (0.0284)
LDA 0.7400 0.7333 0.7500 0.7333* 0.7369 (0.0332) 0.6252 (0.0781) 0.8207 (0.0828) 0.7510 (0.0393)
KPCA 0.7600 0.9667 0.4500 0.7233* 0.6528 (0.0352) 0.5184 (0.1143) 0.7535 (0.1298) 0.6512 (0.0610)
KSVM 0.6000 0.6667 0.5000 0.5958** 0.6651 (0.0279) 0.5233 (0.0961) 0.7714 (0.0653) 0.6267 (0.0321)
PCA+ 0.7600 0.9000 0.5500 0.7525* 0.6810 (0.0327) 0.5980 (0.0798) 0.7432 (0.1059) 0.6906 (0.0462)
SVM+ 0.6600 0.6667 0.6500 0.6517** 0.6372 (0.0285) 0.4580 (0.0567) 0.7716 (0.0571) 0.5857 (0.0276)
LDA+ 0.7800 0.7333 0.8500 0.8350* 0.7776 (0.0314) 0.7206 (0.0762) 0.8204 (0.0771) 0.8054 (0.0360)

* and ** indicate that the p-value of the improvement of MSD over the associated classical approach is less than 0.05 and 0.001, respectively

Fig. 6. ROC curves for the classifiers based on leave-one-out cross-validation (LOOCV) and 10-fold cross-validation (CV)with PIB-PET data and R-fMRI data. In (a) and (c), we used simple
MSD to classify the AD and NC subjects; in (b) and (d), we applied probabilistic MSD to distinguish EMCI and NC subjects. KPCA and KSVM stand for kernel PCA and kernel SVM; PCA+,
SVM+, LDA+ indicate applying the associated classifier to the correlation of the R-fMRI data.
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Fig. 7. (a)–(d): The 2nd and 3rd eigenvectors of theADnetwork Laplacian and theNC network Laplacian for the PIB-PET data set. The size and the color of the ball indicate the amplitude of
the eigenvector in the given brain region and the modular of that brain region, respectively. (e)–(h): The absolute difference between the AD network Laplacian eigenvector and the NC
network Laplacian eigenvector for the PIB-PET data set. The size of the ball denotes the absolute difference in the given brain region.
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Gomez-Ramirez and Wu, 2014; Richiardi et al., 2011), functional con-
nectivity measures derived from fMRI might provide better biomarkers
for the classification of brain states. Thus, we computed the Pearson cor-
relation coefficient between the R-fMRI time series on every pair of
brain VOIs and obtained an N × N correlation matrix for each subject.
Then, we formed a feature vector for each subject by reshaping the
upper triangular part of the correlation matrix to a vector. Afterwards,
PCA/SVM/LDA were applied to classify the EMCI and NC subjects
based on the above features. For convenience, we denote the combina-
tion of PCA/SVM/LDA and correlation measures by PCA+/SVM+/
LDA+. From Table 3(b), we find that the accuracy achieved by MSD is
the best among all the classifiers in either LOOCV or 10-fold CV. In
both CV settings, the AUC of the MSD is significantly higher than that
of each compared method. We also observe that PCA+/SVM+/LDA+
yield better results than their associated counterparts that directly rely
on the time series, and have performance close to that of the
corresponding kernel-based methods. For the PIB-PET data, we may
also use connectivity measures as features to classify the subjects. How-
ever, we have observed that the performance of the classification
degeneratedwhen adopting the connectivitymeasures in this case. Spe-
cifically, we computed the similarity between every two VOIs according
to the Gaussian RBF kernel in Eq. (22) and classified the PET data based
on the similarity measures. Note that the dimension of the PET data of
each subject was 42. After computing the similarity, the number of fea-
tures (i.e., pairwise similarity measures) of each subject was 42 × 41/
2 = 861. This dramatic growth of the data dimension increased the
risk of overfitting when the number of subjects was small and resulted
in the performance decay. Thus, we have not included the results of
PCA+/SVM+/LDA+ for the PIB-PET data.
Discussion

Assumption of smooth graph-signals

The introduced MSD schemes were based on the smoothness of the
imaging data on brain connectivity networks.We justify this assumption
as follows. Through large data analysis, it has beendemonstrated that the
propagation of disease agents of AD obeys a network diffusion model
(Raj et al., 2012; Zhou et al., 2012). By using linear dynamics defined
over the brain network, Raj et al. predicted spatially distinct “persistent
modes” of different types of dementia accurately. Meanwhile, the
smoothness of the signal on graph will increase as the diffusion process
continues (Agaskar and Lu, 2013).

Mathematically, the dynamics of many neuroimaging data such as
amyloid deposition captured by PIB-PET or blood oxygen measured by
fMRI could be modeled as a diffusion process on graph, described by
the following differential equation

dx
dt

¼ −Lx; ð23Þ

where L is the graph Laplacian defined before.With the initial condition
xinit ¼ δu0 representing a unit input at vertex u0, the solution to Eq. (23)
is

xt ¼ e−tLδu0 ¼
XN
i¼1

e−tλi fi f
T
i δu0 ; ð24Þ
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where again {λi} are the eigenvalues of L and { fi} are the corresponding
eigenvectors. From Eq. (24), as time t increases the contribution of the
higher frequencies, namely fis associated with relatively larger λis, will
decrease quickly. This makes the observed signals at time t smooth on
the graph.
Advantage of MSD and extensions

Fundamentally, ourMSDmethods on graphs detectwhich orthonor-
mal subspace derived from the graph structure of observed data might
best capture the properties of a signal, with the subspaces defined by
the Laplacian eigenvectors. In this paper, we describe our methods in
the framework of graph spectrum analysis. Due to the discrepancies of
the eigenvectors of two different graphs, direct comparisons between
the GFT coefficients of a graph-signal on these two graphs may not be
very meaningful. This is the main difference between the GFT and clas-
sical Fourier transforms. However, we can gain insight about how a
graph-signal matches up to a certain graph structure by the spectral
graph properties. In the Decision Models section, we view the graph
Laplacian eigenvectors as an orthonormal basis for each of the two sub-
spaces and detect which subspace fits a graph-signal better. In contrast
to the classical matched subspace detectors (Scharf and Friedlander,
1994), we also incorporate prior information about the signal in terms
of the signal variation on graphs.

From these experiments, we showed that signal detection tech-
niques on graphs that treat brain imaging data as graph-signals could
generate better classification results. PIB-PET imaging of brain amyloid
provides a sensitive and consistent biomarker for detecting early AD-
related pathological changes (Mintun et al., 2006) and characterizing
the network nature of amyloid accumulation in the human brain
(Sepulcre et al., 2013). Nevertheless, cognitively normal elderly controls
may also have high amyloid binding in the PIB-PET image (Forsberg
et al., 2008; Lopresti et al., 2005; Mintun et al., 2006). Similar nonlinear-
ity exists in the R-fMRI data set as well (Friston et al., 2000). Those dif-
ficulties hindered the performance of classification with conventional
methods. However, we achieved much less classification error as
shown in Fig. 5. We found that the two miss-classified subjects (num-
bers 29 and 31 in Fig. 4) in the figure were both PIB positive,1 which
were more likely to develop AD. Moreover, from Fig. 6 and Table 3, we
observe that the MSD outperforms KPCA and KSVM, even if KPCA and
KSVM may yield better results than PCA and SVM, accordingly.

The advantage of the MSD on graphs over other approaches might
be explained by its capability of modeling the nonlinear data manifold
with data-dependent graph structures. Althoughwe could train nonlin-
ear classifiers like kernel SVMs, these nonlinear classifiers are not de-
signed to learn the data manifold. The major difference between the
MSD and the kernel-based methods, namely KPCA and KSVM, is that
MSD considers the similarity between every pair of brain regions
while KPCA andKSVMconsider the affinity between every two subjects.
With small sample sizes, there may be an overfitting risk in those
kernel-base methods as well. In fact, in the PIB-PET data set, we have
tried SVMwith polynomial or Gaussian kernel which resulted in perfor-
mance close to that of the linear SVM.

The general MSD framework allows us to select a variety of similar-
ity metrics to build weighted graphs and choose a reasonable signal
model to describe real data.While there aremore complicatedmethods
to learn the graph structure from the data (Daitch et al., 2009; Hu et al.,
2015a), we utilized a simple Gaussian kernel (Eq. (22)) to construct the
graph efficiently. Other than the Gaussian kernel which is often used to
learn the data manifold (Belkin and Niyogi, 2003; Shuman et al., 2013),
we could also use many other kernel functions to build graphs
(Hofmann et al., 2008). The kernel function selection offers additional
1 Subjects with mean cortical PIB distribution volume ratio greater 1.1.
freedom to adapt the graphs to complex neuroimaging data. Mean-
while, we can determine the graph-signal model based on the training
data. Basically, we can first try the SMSD and check the distribution of
the GFT coefficients. If there are notable patterns in the GFT coefficients,
we may further use CMSD and PMSD to classify the data.

In our applications, we have mapped the imaging data to 90 VOIs or
selected the AD related VOIs according to prior studies. These proce-
dures decreased the risk of overfitting by effectively reducing the data
dimension. In the PIB-PET data, instead of using all the 90VOIs, choosing
the AD related VOIs removed irrelevant information from the data, and
therefore increased the signal-to-noise ratio of the data. Our MSD
framework can also be generalized to the setting where the sizes of
the graphs are large, since it only relies on limited prior information
about the data. In many applications, we may need to consider more
brain VOIs so as to distinguish more subtle differences between two
subject groups. In practice, with the increasing resolution of neuroimag-
ing techniques (DeMartino et al., 2011; Dutta et al., 2014) and advance-
ments in brain image parcellation and registration, we are able to
construct reliable large-scale brain networks (Bressler and Menon,
2010).When the number of regions increases, one challenge of applying
the proposed MSD algorithms is to compute the subspace of the graph
Laplacian matrix. However, effective computational methods such as
Nyström method have been developed to solve this issue (Gittens and
Mahoney, 2013). In addition, when the number of VOIs becomes very
large, the number of samples will be much less than the dimension of
the sample. As mentioned, overfitting of a classifier might be a concern
in this situation. We can greatly avoid this issue by either using the
SMSD which has a low model complexity or reducing the complexity
of the CMSD or PMSD through imposing sparsity on the penaltyweights
in Eqs. (11) or (13), respectively.

Conclusion

In this paper, we formulated the MSD for graph-structure data to
classify brain imaging data. We adopted the bandlimited, constrained,
and probabilistic graph-signal models to capture the smoothness of
the imaging data on brain connectivity networks. We found that GLRT
statistics derived under these three signal models were weighted ener-
gy detectors in general. The effectiveness of theMSDwas demonstrated
through simulations and real experiments. Specifically, we applied it to
two classification tasks: one is to classify AD and NC subjects with PIB-
PET; the other is to discriminate EMCI and NC subjects with R-fMRI.
Compared with the widely used conventional classifiers such as PCA,
SVM and LDA, the MSD schemes achieved better performance possibly
due to the ability of the proposed algorithm to exploit the manifold
structure of the neuroimaging data. Our future work will extend the
MSD on graphs to the classification of multi-modal and longitudinal
brain imaging data.
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Appendix A. Derivation of TSMSD in Eq. (17)

To simplify the presentation, we first consider signal y ¼ F~x þ n
where F = F0 or F1 and ~x ¼ ~xG0 or ~xG1 depending on which hypothesis
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wemake.We canwrite out the p.d.f. of the observation y under a certain
hypothesis as follows

f y; ~x;σð Þ ¼ 2πσ2� �−N
2 exp −

1
2σ2 y−F~xk k22

	 

: ðA:1Þ

Since y = Fỹ, the likelihood function for this multivariate distribu-
tion is

‘ ~x;σ ; yð Þ ¼ 2πσ2� �−N
2 exp −

1
2σ2

~y−~xk k22
	 


: ðA:2Þ

To obtain the MLE of unknown parameters ~x and σ, we take the de-
rivative of the log-likelihood function with respect to σ:

∂‘ ~x;σ ; yð Þ
∂σ

¼ ∂
∂σ

−
N
2
log 2πσ2� �

−
1

2σ2
~y−~xk k22

� �

¼ −
N
σ
þ 1
σ3

~y−~xk k22:
ðA:3Þ

By setting this derivative equal to zero, we achieve the MLE of σ in
the following formula

σ � ¼ N−1
2 ~y−~xk k2: ðA:4Þ

From Eq.(A.2), we know that the MLE of ~x will minimize k~y−~xk2.
Meanwhile, according to the assumption of the bandlimited graph-
signal model, the ith component of x satisfies ~xi ¼ 0 for all i N K. Thus,
the MLE of ~x is ~x� given by

~x�i ¼
~yi; for1 ≤ i ≤ K;
0; for i N K:

	
ðA:5Þ

Plugging Eqs. (A.4) and (A.5) to the likelihood function (Eq. (A.2)),
we obtain the generalized likelihood:

‘� ~x�
;σ �; y

� � ¼ 2πσ2� �−N
2 exp −

1
2σ2 ð yk k22−

XK
i¼1

~y2i Þ
( )

: ðA:6Þ

Then, by taking into account the two hypotheses and assuming that
the ith GFT coefficient of y on graphG j is ỹi,j for j=0, 1, we can express
the generalized likelihood ratio test (GLRT) as:

‘� ~x�
G0
;σ�

0; y
� �

‘� ~x�
G1
;σ�

1; y
� � ¼ exp

1
2σ2

XK
i¼1

~y2i;0−
XK
i¼1

~y2i;1

 !( )
: ðA:7Þ

Thus, the test statistic under the bandlimited graph-signal model is
given by Eq. (17).

Appendix B. Derivation of TCMSD in Eq. (19)

We derive the CMSD on graphs by imposing a general constraint
Cð~xÞ≤r to the graph-signals with the constraint function (Eq. (11)).
We assume that the upper bound r N 0 and the non-negative penalty
weights {αi}i = 1,…,N are specified based on the statistics of the train-
ing data. Under this constraint, we could obtain a MLE by solving the
following optimization problem

min
~x

N log σ þ 1
2σ2

~x−~yk k22; ðB:1Þ

s:t:
XN
i¼1

αi−rð Þ~x2i ≤ 0: ðB:2Þ
By the Karush–Kuhn–Tucker (KKT) condition (Boyd and
Vandenberghe, 2004), we have the optimal solutions of ~x satisfying

∂
∂~x

N logσ þ 1
2σ2

~x−~yk k22 þ
1
2
γ R~xk k22

	 

¼ 0; ðB:3Þ

γ
XN

i¼1
αi−rð Þ~x2i ¼ 0;γ ≥ 0: ðB:4Þ

Here R is a diagonal matrix with Rii=(αi − r)1/2 and γ is called KKT
multiplier. Following Eqs. (B.3), we get

1
σ2

~x−~yð Þ þ γR2~x ¼ 0; ðB:5Þ

which leads to ~xi ¼ ~yi
1þγσ2ðαi−rÞ. Replacing ~xi in Eqs. (B.4) with this, we

can write

γ
XN
i¼1

αi−rð Þ~y2i
1þ γσ2 αi−rð Þð Þ2

¼ 0; ðB:6Þ

from which we could determine the KKT multiplier γ if we assume the
noise levelσ is known. Ifσ is unknown,wemay estimate it from the av-
erage residual energy of the projection as follows

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼N0þ1
~y2i

N−N0

vuut
; ðB:7Þ

withN ' bN being an integer threshold. After solving for γ, we can obtain
a MLE of ~x by solving Eq. (B.5).

For clarity, we denote by γj
⁎ the solution of the KKTmultiplier and~x�i; j

the estimation of the ith GFT coefficient of ~x under hypothesis H j, j =
0, 1. In addition,we assume that the upper bound of the constraint func-
tion is rj, j=0, 1 under each hypothesis. Then, by plugging the solution
of ~x into the likelihood expression in Eq. (16), we reach the GLRT with
the test statistic given by

TCMSD ¼
XN

i¼1
~yi;0−~x�i;0Þ2− ~yi;1−~x�i;1

� �2� �

¼
XN

i¼1

τ2i;0
1þ τi;0
� �2 ~y2i;0− τ2i;1

1þ τi;1
� �2 ~y2i;1

" # ðB:8Þ

where τi,j = γj⁎σj
2(αi − rj) for j = 0, 1 with the noise level σj underH j

being known or estimated by (B.7). Notice that τi,j = 0 for i = 1, …, N
when the constraint (Eq. (B.2)) is met, since γj

⁎ = 0 in this situation.
In addition, τi,j = 0 if the noise level σj = 0.

References

Agaskar, A., Lu, Y.M., 2013. A spectral graph uncertainty principle. IEEE Trans. Inf. Theory
59, 4338–4356.

Azari, N.P., Rapoport, S.I., Grady, C.L., Schapiro, M.B., Salerno, J.A., Gonzalez-Aviles, A.,
Horwitz, B., 1992. Patterns of interregional correlations of cerebral glucose metabolic
rates in patients with dementia of the Alzheimer type. Neurodegeneration 1,
101–111.

Balthazar, M.L.F., de Campos, B.M., Franco, A.R., Damasceno, B.P., Cendes, F., 2014. Whole
cortical and default mode network mean functional connectivity as potential bio-
markers for mild Alzheimer's disease. Psychiatry Res. Neuroimaging 221, 37–42.

Baron, J., Chetelat, G., Desgranges, B., Perchey, G., Landeau, B., De La Sayette, V., Eustache,
F., 2001. In vivo mapping of gray matter loss with voxel-based morphometry in mild
Alzheimer's disease. NeuroImage 14, 298–309.

Bassett, D.S., Bullmore, E., 2006. Small-world brain networks. Neuroscientist 12, 512–523.
Belkin, M., Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Comput. 15, 1373–1396.
Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge university press.
Braak, H., Braak, E., 1996. Development of Alzheimer-related neurofibrillary changes in

the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol. 92,
197–201.

Bressler, S.L., Menon, V., 2010. Large-scale brain networks in cognition: emerging
methods and principles. Trends Cogn. Sci. 14, 277–290.

http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0005
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0005
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0010
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0010
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0010
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0015
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0015
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0015
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0020
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0020
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0025
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0030
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0030
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0035
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0040
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0040
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0040
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0045
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0045


600 C. Hu et al. / NeuroImage 125 (2016) 587–600
Brookmeyer, R., Johnsona, E., Ziegler-Grahamb, K., Arrighic, H.M., 2007. Forecasting the
global burden of Alzheimers disease. Alzheimers Dement. 3, 186–191.

Chao-Gan, Y., Yu-Feng, Z., 2010. DPARSF: a MATLAB toolbox for “pipeline” data analysis of
resting-state fMRI. Front. Syst. Neurosci. 4.

Chen, G., Ward, B.D., Xie, C., Li,W.,Wu, Z., Jones, J.L., Franczak, M., Antuono, P., Li, S.J., 2011.
Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive
status with large-scale network analysis based on resting-state functional MR
imaging. Radiology 259, 213–221.

Chung, F.R., 1997. Spectral graph theory. Am. Math. Soc. 92.
Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods. Cambridge University Press.
Daitch, Samuel I., Kelner, Jonathan A., Spielman, Daniel A., 2009. Fitting a graph to vector

data. Proceedings of the 26th Annual International Conference on Machine Learning.
ACM.

De Martino, F., Esposito, F., van de Moortele, P.F., Harel, N., Formisano, E., Goebel, R.,
Ugurbil, K., Yacoub, E., 2011. Whole brain high-resolution functional imaging at
ultra high magnetic fields: an application to the analysis of resting state networks.
NeuroImage 57, 1031–1044.

Dutta, J., Li, Q., Johnson, K., Zhu, X., El Fakhri, G., 2014. High resolution pet imaging of tau
using an MR-based information theoretic anatomical prior. J. Nucl. Med. 55, 642-642.

Forsberg, A., Engler, H., Almkvist, O., Blomquist, G., Hagman, G., Wall, A., Ringheim, A.,
Langstrom, B., Nordberg, A., 2008. PET imaging of amyloid deposition in patients
with mild cognitive impairment. Neurobiol. Aging 29 (10), 1456–1465.

Friston, K.J., Mechelli, A., Turner, R., Price, C.J., 2000. Nonlinear responses in fMRI: the bal-
loon model, volterra kernels, and other hemodynamics. NeuroImage 12, 466–477.

Gadde, A., Narang, S.K., Ortega, A., 2013. Bilateral Filter: Graph Spectral Interpretation and
Extensions (arXiv, preprint arXiv:1303.2685).

Gittens, A., Mahoney, M.W., 2013. Revisiting the Nystrom Method for Improved Large-
scale Machine Learning (arXiv, preprint arXiv:1303.1849).

Gomez-Ramirez, J., Wu, J., 2014. Network-based biomarkers in Alzheimer's disease: re-
view and future directions. Front. Aging Neurosci. 6.

He, Y., Chen, Z.J., Evans, A.C., 2007. Small-world anatomical networks in the human brain
revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419.

Hofmann, T., Schölkopf, B., Smola, A.J., 2008. Kernel methods in machine learning. Ann.
Stat. 1171–1220.

Horn, R.A., Johnson, C.R., 1990. Matrix Analysis. Cambridge university press.
Hu, C., Cheng, L., Sepulcre, J., Johnson, K.A., Fakhri, G.E., Lu, Y.M., Li, Q., 2015a. A spectral

graph regression model for learning brain connectivity of Alzheimer's disease. PLoS
One 10 (5), e0128136.

Hu, W., Cheung, G., Ortega, A., Au, O.C., 2015 bb. Multiresolution graph Fourier transform
for compression of piecewise smooth images. Image Process., IEEE Trans. 24,
419–433.

Huang, C., Wahlund, L.O., Svensson, L., Winblad, B., Julin, P., 2002. Cingulate cortex hypo-
perfusion predicts Alzheimer's disease in mild cognitive impairment. BMC Neurol. 2,
9.

Huang, S., Li, J., Sun, L., Liu, J., Wu, T., Chen, K., Fleisher, A., Reiman, E., Ye, J., 2009. Learning
brain connectivity of Alzheimer's disease from neuroimaging data. Advances in Neu-
ral Information Processing Systems, pp. 808–816.

Jolliffe, I., 2005. Principal Component Analysis. John Wiley & Sons, Ltd.
Kheradmand, A., Milanfar, P., 2014. A general framework for regularized, similarity-based

image restoration. IEEE Trans. Image Process. 23, 5136–5151.
Kim, W.H., Adluru, N., Chung, M.K., Charchut, S., GadElkarim, J.J., Altshuler, L., Moody, T.,

Kumar, A., Singh, V., Leow, A.D., 2013. Multi-resolutional brain network filtering
and analysis via wavelets on non-Euclidean space. Medical Image Computing and
Computer-Assisted Intervention — MICCAI. Springer, pp. 643–651.

Krstajic, D., Buturovic, L.J., Leahy, D.E., Thomas, S., 2014. Cross-validation pitfalls when
selecting and assessing regression and classification models. J.Chem. Inf. 6, 1–15.

Lee, G., Rodriguez, C., Madabhushi, A., 2008. Investigating the efficacy of nonlinear dimen-
sionality reduction schemes in classifying gene and protein expression studies. IEEE/
ACM Trans. Comput. Biol. Bioinform. 5, 368–384.

Li, Z., Li, Q., Yu, X., Conti, P.S., Leahy, R.M., 2009. Lesion detection in dynamic FDG–PEG
using matched subspace detection. IEEE Trans. Med. Imaging 28 (2), 230–240.

Liu, X., Tosun, D., Weiner, M.W., Schuff, N., Initiative, A.D.N., et al., 2013. Locally linear em-
bedding (LLE) for MRI based Alzheimer's disease classification. NeuroImage 83,
148–157.

Lopresti, B.J., Klunk, W.E., Mathis, C.A., Hoge, J.A., Ziolko, S.K., Lu, X., Meltzer, C.C.,
Schimmel, K., Tsopelas, N.D., DeKosky, S.T., Price, J.C., 2005. Simplified quantification
of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis.
J. Nucl. Med. 46 (12), 1959–1972.

Manolakis, D., Shaw, G., 2002. Detection algorithms for hyperspectral imaging applica-
tions. IEEE Signal Process. Mag. 19 (1), 29–43.

Mathis, C.A., Bacskai, B.J., Kajdasz, S.T., McLellan, M.E., Frosch, M.P., Hyman, B.T., Holt, D.P.,
Wang, Y., Huang, G.F., Debnath, M.L., et al., 2002. A lipophilic thioflavin-T derivative
for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med.
Chem. Lett. 12 (3), 295–298.

McLachlan, G.J., 2004. Discriminant Analysis and Statistical Pattern Recognition. Wiley-
Interscience.

Meyer, F.G., Shen, X., 2014. Perturbation of the eigenvectors of the graph laplacian: appli-
cation to image denoising. Appl. Comput. Harmon. Anal. 36, 326–334.

Mintun, M.A., Larossa, G.N., Sheline, Y.I., Dence, C.S., Lee, S.Y., Mach, R.H., Klunk, W.E.,
Mathis, C.A., DeKosky, S.T., Morris, J.C., 2006. [11C] PIB in a nondemented population
potential antecedent marker of Alzheimer disease. Neurology 67, 446–452.

Oppenheim, A.V., Willsky, A.S., 1997. Signals and Systems. Prentice-Hall.
Raj, A., Kuceyeski, A., Weiner, M., 2012. A network diffusion model of disease progression

in dementia. Neuron 73, 1204–1215.
Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D., 2011. Decoding

brain states from fMRI connectivity graphs. NeuroImage 56, 616–626.
Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embed-

ding. Science 290, 2323–2326.
Sandryhaila, A., Moura, J.M.F., 2013. Discrete signal processing on graphs. IEEE Trans. Sig-

nal Process. 61 (7), 1644–1656.
Sanz-Arigita, E.J., Schoonheim, M.M., Damoiseaux, J.S., Rombouts, S.A., Maris, E., Barkhof,

F., Scheltens, P., Stam, C.J., 2010. Loss of ‘small-world’ networks in Alzheimer's dis-
ease: graph analysis of fMRI resting-state functional connectivity. PLoS One 5,
e13788.

Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D., 2006. Spectral Methods for
Dimensionality Reduction. Semisupervised learning, MIT Press, Cambridge, MA,
pp. 293–308.

Scharf, L.L., Friedlander, B., 1994. Matched subspace detectors. IEEE Trans. Signal Process.
42 (8), 2146–2157.

Sepulcre, J., Sabuncu, M.R., Becker, A., Sperling, R., Johnson, K.A., 2013. In vivo characteri-
zation of the early states of the amyloid-beta network. Brain 136, 2239–2252.

Shuman, D., Narang, S., Frossard, P., Ortega, A., Vandergheynst, P., 2013. Signal processing
on graphs: extending high-dimensional data analysis to networks and other irregular
data domains. IEEE Signal Process. Mag. 30, 83–98.

Stam, C., Jones, B., Nolte, G., Breakspear, M., Scheltens, P., 2007. Small-world networks and
functional connectivity in Alzheimer's disease. Cereb. Cortex 17, 92–99.

Stanley, M.L., Moussa, M.N., Paolini, B.M., Lyday, R.G., Burdette, J.H., Laurienti, P.J., 2013.
Defining nodes in complex brain networks. Front. Comput. Neurosci. 7.

Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D., 2008. Network analysis of in-
trinsic functional brain connectivity in Alzheimer's disease. PLoS Comput. Biol. 4 (6),
1–11.

Tenenbaum, J.B., De Silva, V., Langford, J.C., 2000. A global geometric framework for non-
linear dimensionality reduction. Science 290, 2319–2323.

Tzourio-Mazoyera, N., Landeaub, B., Papathanassioua, D., Crivelloa, F., Etarda, O.,
Delcroixa, N., Mazoyerc, B., Joliota, M., 2002. Automated anatomical labeling of activa-
tions in SPM using a macroscopic anatomical parcellation of the MNI MRI single-
subject brain. NeuroImage 15 (1), 273–289.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of “small-world” networks. Nature 2,
393–440.

Wee, C.Y., Yap, P.T., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L.,
Shen, D., 2012. Resting-state multi-spectrum functional connectivity networks for
identification of MCI patients. PLoS One 7, e37828.

Xiang, J., Guo, H., Cao, R., Liang, H., Chen, J., 2013. An abnormal resting-state functional
brain network indicates progression towards Alzheimer's disease. Neural Regener.
Res. 8, 2789.

Zalesky, A., Fornito, A., Harding, I.H., Cocchi, L., Yücel, M., Pantelis, C., Bullmore, E.T., 2010.
Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage 50,
970–983.

Zhou, J., Gennatas, E.D., Kramer, J.H., Miller, B.L., Seeley, W.W., 2012. Predicting regional
neurodegeneration from the healthy brain functional connectome. Neuron 73,
1216–1227.

http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0050
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0050
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0055
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0055
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0060
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0060
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0060
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0065
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0070
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0070
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0075
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0075
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0075
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0080
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0080
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0080
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0085
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0085
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0090
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0090
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0095
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0095
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0100
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0100
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0105
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0105
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0110
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0110
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0115
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0115
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0120
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0120
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0125
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0130
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0130
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0130
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0135
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0135
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0135
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0140
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0140
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0140
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0145
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0145
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0145
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0150
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0155
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0155
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0160
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0160
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0160
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0165
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0165
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0170
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0170
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0170
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0175
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0175
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0180
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0180
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0180
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0185
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0185
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0185
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0190
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0190
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0195
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0195
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0195
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0200
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0200
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0205
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0205
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0210
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0210
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0215
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0220
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0220
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0225
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0225
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0230
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0230
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0235
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0235
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0240
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0240
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0240
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0245
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0245
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0245
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0250
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0250
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0255
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0255
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0260
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0260
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0260
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0265
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0265
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0270
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0275
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0275
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0275
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0280
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0280
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0285
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0285
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0285
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0290
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0290
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0295
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0295
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0300
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0300
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0300
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0305
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0305
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0310
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0310
http://refhub.elsevier.com/S1053-8119(15)00936-2/rf0310

	Matched signal detection on graphs: Theory and application to brain imaging data classification
	Introduction
	Theory
	Weighted graphs and graph-signals
	Frequency analysis of graph-signals
	Graph-signal models
	Bandlimited graph-signals
	Constrained graph-signals
	Probabilistic graph-signals

	Decision models
	Simple-MSD on graphs
	Constrained-MSD on graphs
	Probabilistic-MSD on graphs


	Results
	Numerical simulations
	PIB-PET and R-fMRI study
	AD/NC classification with PIB-PET
	EMCI/NC classification with R-fMRI

	Discussion
	Assumption of smooth graph-signals
	Advantage of MSD and extensions

	Conclusion
	Conflict of interest
	Acknowledgments
	Appendix A. Derivation of TSMSD in Eq. (17)
	Appendix B. Derivation of TCMSD in Eq. (19)
	References


